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THERMODYNAMIC ANALYSIS OF MASS-TRANSFER MOTIVE
FORCES IN THE COURSE OF CRYSTALLIZATION
FROM SOLUTIONS

V. V. Kafarov, I, N. Dorokhov, UDC 532.529.5 :66.065.5
and E. M. Kol'tsova

Onthe basis of taking the volume, mass, momentum, and energy of the surface phase into ac-
count, the structure of the motive forces of mass transfer to the phase interface (and from it
into the carrier phase) in crystallization and solution is established. The correctness of the

relations obtained is verified in two systems.

1. Structure of Dissipative Function of a Multiphase Medium

in Which Crystallization Occurs

Tn accordance with the concepts outlined in [1], 2 multiphase medium is considered, where the first (car-
rier) medium is a solution, the r-th is crystals, of dimensions in the range (r —dr, r-+dr), and the surface
phase is a o phase (the o phase is of volume V¢, density pg, and temperature T;). In the steady case, the inten-
sity of mass transfer from the carrier phase into the o phase and from the ¢ phase into the r-th phase is the
same. In the most general case, however, the fluxes through the surface phase may be unequal; in other words

pgf}\'dr —7_& Jio'idr’ ¥ Qfgar 7é Jdifdr

Let n =A—&, J=J15,—J51. By means of a discussion analogous to that outlined in [1], the following equation

tions are obtained in differential form: mass conservation of the carrier phase ~
, R
iv (pyvy) = — f Ifdr, 1)

i

mass conservation of the component in the carrier phase (in the interests of simplicity of exposition, it is as-
sumed that only one component takes part in the phase transition)

dic“ = (=1 5 Jjdr, @)

the balance of number of particles
of . ofn
—L + div — —, 3)
Y + (fve) + or
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mass conservation of the o phase
DngVa

mass conservation of the component in the ¢ phase
Vs 2L — (1 ,0) (7 pi), (5)
motion of the carrier phase
R R
dyvy 0 0 . (6)
o= —oavP— [ (o oo e — v dr- o,
0 [
motion of the r~th phase
D,v, .
(08 + 0gVo) | —5-; = (r -+ Vo) [VP+{ofr + p5Vs) ffia + (007 4 pOV,) fF, ()

{the velocity of motion of the ¢ phase consisting of particles of dimension r is assumed to be the same as the
velocity of motion of the particles themselves), energy of the carrier phase

o duy P dp? . épor—L oy . A (Vg — v, )2 S .
T T e T a f 2+ PV T (v Vz)d’—jff — df—tihquerr.olQ“ ()
energy of the r-th phase 0 ’
pdr] ngz =7 ;f D;ig — g + P2Quf (9)
energy of the ¢ phase
Vel g =g P I ot Gk G — g — 50— B3 ) e (1) 3. (10

The role of heat source or sink is taken by the ¢ phase. Here

4, d D,
e bk ; 2
at o TEVE

0 0
= — + kgt b —— .
ot +2V -1 ar

The hypothesis of local equilibrium within the limits of each phase is adopted, allowing the following relations
to be written

do [ ——
dis; ;o dy +_p1i 1( o ) M diCny By i
e T, dt T, " @ T P Ty
1
D,
. Dys, fr Dy, frP ( 09 )
0 P2 0 _JT 0 Lhls 0 2
I D= r Tpp T T D )
1
D, | ——
D,s Vo Du fV P ( [ )
[ 270 __ o0 ] 2“g 0 G ]
0eVol o =0 7. pp Tt Di
. fz d 4na? iu'kapgvaf D‘zcko HpchVaf chpo
T, dt T, Df T, Df
ig~— TSy = Cpaltyq + Cotbpss Ig~— TeSg = Crglhpe + Cpoltpo s
ly — T2y = Uy

Taking Eqs. (2), (5), and (8)-(11) into account, the substantial derivative of the mixture entropy is written in
explicit form
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R R
1 { 1 1
+ 0 AN — .
T, oj(%“rpo ) MM (v vz)dr+5q1g( T )dr—l—
R R ,
+YC/QG< L1 )dr—l—s‘Jf Mar Mo —i—i1[ L1 + _ e d
p i Ty Ty : o T T Ty Ty 27, } r+

R
Yio . (Vz—V)Z
+ 1\ s ”:_u"ﬁ___ B 1 _ 1 _{_[__ﬁi:”d j‘ 0 Beoe  Mas
§ o ([ et ] a5 7))o o { e+

R . ’
; 11 "o || Paz o ; 1 1
+‘2[ T T, _“‘”(5 et {[ T, T, ]“”2[ T, T, ]}dr'
(12)

The first three terms in Eq. (12) define the increment in mixture entropy (on account of influx of entropy from
outside) due to energy transfer from the external medium, while the remaining seven define the increment in
entropy on account of internal irreversible processes within and between phases: mechanical and thermal inter-
actions between phases, phase transitions, and mass transfer.

2. Motive Forces of Crystallization

Bach term in Eq. (12) is the product of a thermodynamic flux and the corresponding motive force. The
motive forces associated with mass transfer may be enumerated as follows: for the mass transfer of material
to the phase interface

Mra Ureo . 1 1 (Vo — vy ]
KXyg= | —— — 2 i —_—— —_—2 1, (13)
o= |7 TG]J”[TG ol R
for the crystallization process itself
! 1 1
X, — | Yro_ _ M | — ) (14)
* [ TU T2 ]+ : T'Z TU

for the mass transfer of material from the phase interface into the carrier

BN IR TV DU B B (vz—vi)z]
X‘““[To T,]J”[Ti TU]+[ 27,

for the solution process itself

. 1 1
X, — | Hex Mo i _ ] .
¥ [ r, T, |t T

The first term in the expression for the motive force of mass transfer from the carrier phaseto the inter-
face in Eq. (13) is due to the difference in chemical potential in the flow core and close to the crystal surface,
the second to the thermal disequilibrium of the ¢ and carrier phases, and the third to the velocity disequilibrium.
Pro _Mus
Ts T,
and an enthalpy motive force due to the thermal disequilibrium of the ¢ and r-th phases. There is no third
term in Eq. (14), since velocity equilibrium is assumed between the r-th phase and the corresponding ¢ phase.

The motive force of crystallization itself consists of two parts: the difference in Planck potentials
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3. Crystal Growth Rate

Using linear Onsager relations (taking only the contribution of direct effects into account}, the mass-
transfer rate is determined

- Wi Ugo . l l (va—vy)? }
Jio =L — — _
| o ol R I s v B
and also the rate of crystallization itself

1 1
0%, — [ Uro . Mpo i _ } .
Pat = L {[ T, T, ]“ T,

The chemical potentials pgi are written in the form

By = RT; Iny; 4 RT; {]nchs (Ts) + Cnr — Cus (T) + - } ) 15)
Crs (TQ) ’

where Ljg and Ly, are kinetic coefficients; y; is the activity coefficient of the component in the i-th phase;
the subscript s corresponds to the state of saturation at temperature T,.

Taking Eq. (15) into account, and omitting terms of second order of smallness and above (since the devia-
tions from equilibrium are sufficiently small), the relations for the rates of mass transfer and phase transition
are written in the form

. 1 1 Cg (V — V. )2
Jio=1L _ i _ — R I8 16)
4 1o ] {[01 cs] + R [ Ta 7"1 ] R 2 T1 }
, i 1 1 c (Vg — vy)?
Jau=1L feg — ¢ - =55 [ B ]+ S CY N )
o1 o . { 1l R T, T, R 2T, )
" . i2 1 1
pgK:ng : {CG——C?}’ Cs*:cs [1_ R ( T, - T );l’ (18)
OO = Loy —2— {cF —ca}. o
< c

5

Temperature disequilibrium of the phases actually leads to change in the saturation concentration.

The kinetic coefficients Ly and Ly will now be determined. At the crystal surface, there are adsorbed
particles. Because of particle exchange between the step and adsorbed layer at the surface, particles are added
to the crystal at fissures, and a value of the adsorbed-particle chemical potential close to s is established
around the steps [2, 3]. The adsorbed particles undergo thermal oscillations in three directions: one perpendi-
cular to the crystal surface and two parallel to it. Fluctuations of the first oscillations lead to breakaway of
particles from the crystal surface and then to transitionintothe carrier phase; oscillations of the second type
ensure diffusional migration of the particles along the crystal surface to the steps [2, 3]. Suppose that displace-
ment of the elementary steps occurs on account of plane diffusion in one direction x. The flux of material to

the steps may be written as Dj—fcdydz' where dz is the step height and dx =dy is assumed. The total flux of

material to the steps at the crystal is obtained by summation

N
R de dSy ~ DS d
i=1 d dx

X

where N is the number of fissures over the entire surface of the erystal. On the other hand, this flux is also
known to be

(cg — C¥), 20)

while D~d?v exp (Ua/RTs).
Integrating Eq. (20) from 0 to d, the coefficient Ty is determined
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Loy = DS(C,/(dR).

Hence, the crystal growth rate due to crystallization itself may be written as

D
pg}\\« = —d— SS (CO' — Cs*)
or
pah ==& exp [— U, /RT,] Sg leg —c¥], &= vd. 21)
The kinetic coefficient L;s is written in the form
CS

LlO:E’m a— Ss-

4, Verifying the Correctness of the Relations Obtained

To confirm the results obtained, experiments on the growth and solution of crystals being deposited in
a vertical tube cell were performed, using two systems. A solution and crystals of alumoammoniwun alum were
the first system ‘chosen. The system of equations describing the motion and growth of the crystals, together
with heat- and mass-transfer phenomena — a consequence of the system in Egs. (1)-(10), (16), (17), and (21) —
was solved for two values of the temperature (variant I: T;=293K, ¢; =126 kg/m?; variant II: T;=295K, ¢;=
126 kg/m?) at different initial values of the crystal mass (0.5-1.2 mg). The kinetic coefficient £ and the
parameter Uy in Eq. (21) were the unknowns. They were determined from a comparison of experimental and
calculated data on the precipitation rate, by the method of scanning over a sufficiently broad range of values.
For all the variants, the values obtained were the same (¢ =43,8 cm/sec; Ugq=13,250 J/mole; relative error
87%). The reason for these identical values is that the parameters ¢ and U, are independent of the crystal mass.
The coefficient € ®vd, where d~107% cm and v €[107-10%3 sec‘i], is equal to 43.8 cm/sec in the present case,
i.e., lies in the given range. TIn the calculations for all the experiments it was found that: 1) the crystallization
conditions are almost quasisteady; 2) the temperature at the crystal surface is higher than the temperature of
the crystal itself by 0.005; 3) the temperature at the crystal surface is higher than the temperature of the solu-
tion by (0.06-0.1).

A solution and crystals of oxalic acid were chosen as the second system, Experiments were performed
at temperatures in the range 303-323°K, at concentrations of 13-21%, and with different crystal masses (0.2-7
mg), with the aim of investigating the solution of oxalic-acid crystals in a cell{ube. The system of equations
describing the motion and solution of the crystal, together with heat- and mass-transfer phenomena, is analo-
gous to those for the first system. Earlier [4], the given system was investigated taking the supersaturation
(cy = cg) as the motive force; solution occurred in the diffusional region, and the dependence Nu=ARe’ % was
found for determining the mass-transfer coefficient 831 In the present work, Eq. (17) was taken as the motive
force. The mass-transfer coefficient was the unknown parameter, As a result of calculations for the system
with crystals of different dimensions in different conditions, taking the relation for the motive force in Eq. (17)
into account, the dependence Nu=ARe"%? was confirmed; the error in determining the rate of solution of the
crystals according to the relation obtained was 7% lower than that determined in [4].

The contribution of the effects of the terms appearing in the dependence for the motive force of mass
transfer in Eqs, (16) and (17) will now be estimated. If the contribution of the effect of the first term ¢; — cg is
taken as 100%, then for the crystallization of alumoammonium alum the effect of the second term in Eq. (16)
(i1Cs/R)(1/ Ty ~ 1/T,) is 3-30%; in the solution of oxalic acid crystals, the effect of the second term in Eq. (17)
is from 0.1 to 4% and the effect of the third term in Eq. (17) is 10”%. The contribution of the effect of the
second term in the relation for the motive force of crystallization itself is 0.1-5% of the first term in Eq. (18).

Since the contribution of the enthalpic motive force is very significant, it might be expected that, in the
case where the relations obtained were incorrect, the values of € and U, would be different for the growth of
crystals of alumoammonium alum of different mass, and the temperature dependence of 8y in the solution of
oxalic acid crystals would be stronger than the temperature dependence of the diffusion coefficient.

NOTATION

r, crystal volume; Vi, volume of o phase; f(r)dr, number of crystals of dimension in the range (r — dr, r+
dr); pf, pd, pg., true density of carrier phase, crystal, ¢ phase, respectively; A, rate of change of crystal volume
due to crystallization itself; £, rate of change in crystal volume due to solution itself; n =\ — £, rate of change in
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crystal volume; Jy4f(r)dr, intensity of mass transfer from carrier phase to ¢ phase in unit volume per anit
time; J, mf(r)dr, intensity of mass transfer from ¢ phase into carrier phase; pi, mean density of carrier phase,

p1 =p{oey; @y, volume content of carrier phase, a1+0fh(r +Vftridr=1; R, volume of largest crystal; ci;, concentra-

tion (mass fraction) of component in i-th phase; vy, vy(r}, velocity of carrier phase and particle of dimension
(volume) r; P, pressure; fi;, force of interaction between carrier phase and particle of dimension r, referred
to particle mass; u;, specific energy of i-th phase Fj, mass force acting on i-th phase; Z, surface-tension coef-
ficient; djg» heat flux from the i-th phase to the o phase; i;, enthalpy of the i~th phase; Tj, temperature of the
i-th phase; py4, chemical potential of the component in the i-th phase; ti, heat flux due to heat conduction in
the first phase; Qj, external heat flux in the i-th phase; S, si, specific entropy of the whole mixture and the i-th
phase, respectively; J, flux of thermodynamic forces; X, thermodynamic force; R, universal gas constant; v,
activity coefficient; D, diffusion coefficient, Lig, Ly, Lyg, Loy, kinetic coefficients; Sg, surface of the crystal;
d, step height; v, oscillation frequency of atom; Uy, activation energy of transition between two neighboring
equilibrium positions of the molecule at the surface; f y;, mass~transfer coefficient; cg, equilibrium concen-
tration at temperature Ty; @, characteristic radius of particle; Nu= (8 p,2a)/D; Re=(pJes2a)/uy 5 i, viscosity coef-
ficient of the solution; A, constant. Subscripts: 1, carrier phase; 2, disperse phase; 0, ¢ phase; k, component;
p, solvent; s, state of saturation; S, surface,
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ELEMENTARY KINETIC THEORY OF DIFFUSION IN GASES

N. D. Kosov UDC 533.15

The results of research on the description of diffusion using the elementary kinetic theory are
generalized. It is shown that for thermodiffusion and barodiffusion, this theory, bringing to
light the physical essence of the phenomenon, leads to the same basic differential equations as
the rigorous theory.

Introduction. The elementary kinetic theory first permitted expressing the transport coefficients (dif-
fusion, viscosity, and thermal conductivity) in terms of the molecular characteristics of the gas. But, already
with the description of the diffusion of 2 mixture of two gases, this theory encountered a number of difficulties.
Boltzmann [1] obtained equations for the coefficients of diffusion of the separate components of binary mixtures,
from which it followed that under isobaric—isothermic conditions each component has its own coefficient of dif-
fusion, which leads to different flows of molecules in opposite directions. This should not occur with diffusion
of gases in closed volumes (for example, in a pipe or in two volumes connected by capillaries). Inthis connec-
tion, Boltzmann assumed that the equations he obtained were not correct. Mayer [2] eliminated the contradiction
by decreasing the flux of one type of molecule and increasing the flux of the other by an amount so that the two
fluxes would equalize. The equations obtained by Mayer resultéd in equal diffusion coefficients for components
in a binary mixture, which is confirmed experimentally. However, Mayer's equation gave a strong concentration
dependence of this coefficient, later called the coefficient of mutual diffusion, which is not observed experi-
mentally. The strong concentration dependence of Mayer's diffusion coefficient was explained by the effect of
homogeneous collisions of molecules. Maxwell [3], analyzing Loschmidt's experiments, already used an equa-
tion for the coefficient of mutual diffusion which did not contain a term that takes into account the effect of
homogeneous collisions on the mean free path length. In all later theories, including also in the rigorous kinetic
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